

Year 11 Mathematics Specialist Test 4 2016

Calculator Free Trigonometry

STUDENT'S	NAME
-----------	------

DATE:

TIME: 50 minutes

MARKS: 50

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, ruler, eraser. Notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (16 marks)

Prove the following identities

(a)
$$\frac{1-\sin x}{1+\sin x} = (\sec x - \tan x)^2$$

(b)
$$\frac{\sin 2A + \cos 2A + 1}{\sin A + \cos A} = 2\cos A$$

(c)
$$\sec^2 A = \frac{\csc A}{\csc A - \sin A}$$
 [4]

(d)
$$\frac{\sin 8A \cos A - \sin 6A \cos 3A}{\cos 2A \cos A - \sin 3A \sin 4A} = \tan 2A$$

[4]

2. (4 marks)

Using a suitable addition formula, calculate the exact value of $\cos 75^{\circ}$

3. (4 marks)

Show that $8\cos 80^{\circ}\cos 40^{\circ}\cos 20^{\circ} = 1$

4. (11 marks)

Solve the following equations for the given domains

(a)
$$2\sin\theta + \cos 2\theta = 1$$
, $0^\circ \le \theta \le 180^\circ$ [4]

(b)
$$\sin 2\theta = \sin \frac{\pi}{6}$$
 , $0 < \theta < 2\pi$ [3]

(c)
$$\tan \theta + 3\cot \theta = 5\sec \theta$$
, $0 < \theta < 2\pi$

5. (7 marks)

(a) Show that the equation $\cos 3x - \sin 2x = 0$ can be written as $\cos x(4\sin^2 x + 2\sin x - 1) = 0$

6. (8 marks)

If
$$A + B = \frac{\pi}{4}$$
 and $\tan A = \frac{n}{n+1}$, determine, in terms of *n*
(a) $\tan B$. (Hint: use the identity for $\tan (A + B)$) [4]

(b) $\tan(A-B)$